Advertisement

Evaluation of analgesic interaction between morphine, dexmedetomidine and maropitant using hot-plate and tail-flick tests in rats

Published:April 08, 2019DOI:https://doi.org/10.1016/j.vaa.2018.12.009

      Abstract

      Objective

      To determine if the combinations of morphine, dexmedetomidine and maropitant enhance the analgesic effect and decrease the dose of individual drugs in rats subjected to noxious thermal stimulation with hot-plate and tail-flick tests.

      Study design

      Randomized, blinded, prospective experimental study.

      Animals

      A total of 96 male Sprague–Dawley rats.

      Methods

      The rats were randomly assigned to the following groups: 1) morphine (3 mg kg–1; Mor); 2) dexmedetomidine (10 μg kg–1; Dex); 3) maropitant (20 mg kg–1; Maro); 4) morphine (1.5 mg kg–1) + dexmedetomidine (5 μg kg–1; Mor + Dex); 5) dexmedetomidine (5 μg kg–1) + maropitant (10 mg kg–1; Dex + Maro); 6) morphine (1.5 mg kg–1) + maropitant (10 mg kg–1; Mor + Maro); 7) morphine (1 mg kg–1) + dexmedetomidine (3.5 μg kg–1) + maropitant (6.5 mg kg–1; Mor + Dex + Maro); and 8) normal saline (0.5 mL; saline), all injected intravenously. The tail-flick and hot-plate tests were performed before and 5, 15, 30, 45, 60, 90 and 120 minutes after the injection of the drugs. These variables were analysed with the effect–time area under the curve (AUC) analysis and a mixed linear model.

      Results

      Data were analysed in 94 rats. The rank order of the total analgesic effects of the treatment groups shown by AUC analysis was found to be Mor > Maro + Mor > Dex + Mor > Dex > Maro > Dex + Maro + Mor > Dex + Maro > saline for the hot-plate test, and Maro + Mor > Mor > Dex + Mor > Dex + Maro + Mor > Maro > Dex > Dex + Maro > saline for the tail-flick test. The mixed model analysis showed a significant difference between latencies of the group morphine + maropitant versus all other treatment groups in the tail-flick test (p < 0.0001) and morphine versus saline in the hot-plate test (p < 0.05).

      Conclusions and clinical relevance

      Morphine and maropitant appeared to show a supra-additive effect for analgesia in the tail-flick test. Clinical trials should be conducted to establish its use in treating pain.

      Keywords

      To read this article in full you will need to make a payment

      Subscribe:

      Subscribe to Veterinary Anaesthesia and Analgesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aguado D.
        • Abreu M.
        • Benito J.
        • et al.
        Amitriptyline, minocycline and maropitant reduce the sevoflurane minimum alveolar concentration and potentiate remifentanil but do not prevent acute opioid tolerance and hyperalgesia in the rat: a randomised laboratory study.
        Eur J Anaesthesiol. 2015; 32: 248-254
        • Benchaoui H.
        • Cox S.
        • Schneider R.
        • et al.
        The pharmacokinetics of maropitant, a novel neurokinin type-1 receptor antagonist, in dogs.
        J Vet Pharmacol Ther. 2007; 30: 336-344
        • Boscan P.
        • Monnet E.
        • Mama K.
        • et al.
        Effect of maropitant, a neurokinin 1 receptor antagonist, on anesthetic requirements during noxious visceral stimulation of the ovary in dogs.
        Am J Vet Res. 2011; 72: 1576-1579
        • Boxenbaum H.
        Interspecies scaling, allometry, physiological time, and the ground plan of pharmacokinetics.
        J Pharmacokinet Biopharm. 1982; 10: 201-227
        • Buck S.
        • Deshmukh P.
        • Yamamura H.
        • et al.
        Thermal analgesia and substance P depletion induced by capsaicin in guinea-pigs.
        Neuroscience. 1981; 6: 2217-2222
        • Carter R.B.
        Differentiating analgesic and non-analgesic drug activities on rat hot plate: effect of behavioral endpoint.
        Pain. 1991; 47: 211-220
        • D’Amour F.L.
        • Smith D.L.
        A method for determining loss of pain sensation.
        J Pharmacol Exp Ther. 1941; 72: 74-79
        • De Felipe C.
        • Herrero J.F.
        • O’Brien J.A.
        • et al.
        Altered nociception, analgesia and aggression in mice lacking the receptor for substance P.
        Nature. 1998; 392: 394-397
        • Duggan A.
        • Morton C.
        • Zhao Z.
        • et al.
        Noxious heating of the skin releases immunoreactive substance P in the substantia gelatinosa of the cat: a study with antibody microprobes.
        Brain Res. 1987; 403: 345-349
        • Eddy N.B.
        • Leimbach D.
        Synthetic analgesics. II. Dithienylbutenyl-and dithienylbutylamines.
        J Pharmacol Exp Ther. 1953; 107: 385-393
        • Gamse R.
        • Saria A.
        Nociceptive behavior after intrathecal injections of substance P, neurokinin A and calcitonin gene-related peptide in mice.
        Neurosci Lett. 1986; 70: 143-147
        • Gaynor J.
        Is postoperative pain management important in dogs and cats?.
        Vet Med. 1999; 94: 254-257
        • Go V.
        • Yaksh T.
        Release of substance P from the cat spinal cord.
        J Physiol. 1987; 391: 141
        • Guneli E.
        • Yavasoglu N.U.K.
        • Apaydin S.
        • et al.
        Analysis of the antinociceptive effect of systemic administration of tramadol and dexmedetomidine combination on rat models of acute and neuropathic pain.
        Pharmacol Biochem Behav. 2007; 88: 9-17
        • Guo T.-Z.
        • Jiang J.-Y.
        • Buttermann A.E.
        • et al.
        Dexmedetomidine injection into the locus ceruleus produces antinociception.
        Anesthesiology. 1996; 84: 873-881
        • Gursoy S.
        • Ozdemir E.
        • Bagcivan I.
        • et al.
        Effects of alpha 2-adrenoceptor agonists dexmedetomidine and guanfacine on morphine analgesia and tolerance in rats.
        Ups J Med Sci. 2011; 116: 238-246
        • Hunskaar S.
        • Berge O.-G.
        • Hole K.
        A modified hot-plate test sensitive to mild analgesics.
        Behav Brain Res. 1986; 21: 101-108
      1. IUPHAR/BPS. 2018
        • Jin F.
        • Chung F.
        Multimodal analgesia for postoperative pain control.
        J Clin Anesth. 2001; 13: 524-539
        • Kalso E.A.
        • Pöyhiä R.
        • Rosenberg P.H.
        Spinal antinociception by dexmedetomidine, a highly selective α2-adrenergic agonist.
        Basic Clin Pharmacol Toxicol. 1991; 68: 140-143
        • Keyhanfar F.
        • Meymandi M.S.
        • Sepehri G.
        • et al.
        Evaluation of antinociceptive effect of pregabalin in mice and its combination with tramadol using tail flick test.
        Iran J Pharm Res. 2013; 12: 483
        • Kilkenny C.
        • Browne W.J.
        • Cuthill I.C.
        • et al.
        Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research.
        PLoS Biol. 2010; 8e1000412
        • Kuusela E.
        • Vainio O.
        • Kaistinen A.
        • et al.
        Sedative, analgesic, and cardiovascular effects of levomedetomidine alone and in combination with dexmedetomidine in dogs.
        Am J Vet Res. 2001; 62: 616-621
        • Lascelles B.D.X.
        • McFarland J.M.
        • Swann H.
        Guidelines for safe and effective use of NSAIDs in dogs.
        Vet Ther. 2005; 6: 237
        • Le Bars D.
        • Gozariu M.
        • Cadden S.W.
        Animal models of nociception.
        Pharmacol Rev. 2001; 53: 597-652
        • Marquez M.
        • Boscan P.
        • Weir H.
        • et al.
        Comparison of NK-1 receptor antagonist (maropitant) to morphine as a pre-anaesthetic agent for canine ovariohysterectomy.
        PLoS One. 2015; 10e0140734
        • Nagy J.
        • Vincent S.
        • Staines W.
        • et al.
        Neurotoxic action of capsaicin on spinal substance P neurons.
        Brain Res. 1980; 186: 435-444
        • Nicoll R.
        • Schenker C.
        • Leeman S.
        Substance P as a transmitter candidate.
        Annu Rev Neurosci. 1980; 3: 227-268
        • Niyom S.
        • Boscan P.
        • Twedt D.C.
        • et al.
        Effect of maropitant, a neurokinin-1 receptor antagonist, on the minimum alveolar concentration of sevoflurane during stimulation of the ovarian ligament in cats.
        Vet Anaesth Analg. 2013; 40: 425-431
        • Ossipov M.H.
        • Harris S.
        • Lloyd P.
        • et al.
        Antinociceptive interaction between opioids and medetomidine: systemic additivity and spinal synergy.
        Anesthesiology. 1990; 73: 1227-1235
        • Pascoe P.J.
        Opioid analgesics.
        Vet Clin North Am Small Anim Pract. 2000; 30: 757-772
        • Sakurada T.
        • Katsumata K.
        • Yogo H.
        • et al.
        The neurokinin-1 receptor antagonist, sendide, exhibits antinociceptive activity in the formalin test.
        Pain. 1995; 60: 175-180
        • Stone L.S.
        • German J.P.
        • Kitto K.F.
        • et al.
        Morphine and clonidine combination therapy improves therapeutic window in mice: synergy in antinociceptive but not in sedative or cardiovascular effects.
        PLoS One. 2014; 9e109903
        • Vainio O.
        Introduction to the clinical pharmacology of medetomidine.
        Acta Vet Scand Suppl. 1989; 85: 85-88
        • Yashpal K.
        • Dam T.-V.
        Quantitative autoradiographic distribution of multiple neurokinin binding sites in rat spinal cord.
        Brain Res. 1990; 506: 259-266
        • Young A.
        • Buvanendran A.
        Recent advances in multimodal analgesia.
        Anesthesiol Clin. 2012; 30: 91-100