Advertisement

Effect of dexmedetomidine on the minimum infusion rate of propofol preventing movement in dogs

Published:August 03, 2017DOI:https://doi.org/10.1016/j.vaa.2017.07.004

      Abstract

      Objective

      To determine the effect of dexmedetomidine on induction dose and minimum infusion rate of propofol preventing movement (MIRNM).

      Study design

      Randomized crossover, unmasked, experimental design.

      Animals

      Three male and three female healthy Beagle dogs weighing 10.2 ± 2.8 kg.

      Methods

      Dogs were studied on three occasions at weekly intervals. Premedications were 0.9% saline (treatment P) or dexmedetomidine (1 μg kg−1, treatment PLD; 2 μg kg−1, treatment PHD) intravenously. Anesthesia was induced with propofol (2 mg kg−1 and then 1 mg kg−1 every 15 seconds) until intubation. Anesthesia was maintained for 90 minutes in P with propofol (0.5 mg kg−1 minute−1) and saline, in PLD with propofol (0.35 mg kg−1 minute−1) and dexmedetomidine (1 μg kg−1 hour−1), and in PHD with propofol (0.3 mg kg−1 minute−1) and dexmedetomidine (2 μg kg−1 hour−1). The stimulus (50 V, 50 Hz, 10 ms) was applied to the antebrachium, and propofol infusion was increased or decreased by 0.025 mg kg−1 minute−1 based on a positive or negative response, respectively. Data were analyzed using a mixed-model anova and presented as mean ± standard error.

      Results

      Propofol induction doses were 8.68 ± 0.57 (P), 6.13 ± 0.67 (PLD) and 4.78 ± 0.39 (PHD) mg kg−1 and differed among treatments (p < 0.05). Propofol MIRNM values were 0.68 ± 0.13, 0.49 ± 0.16 and 0.26 ± 0.05 mg kg−1 minute−1 for P, PLD and PHD, respectively. Propofol MIRNM decreased 59% in PHD (p < 0.05). Plasma propofol concentrations were 14.04 ± 2.30 (P), 11.30 ± 4.30 (PLD) and 7.96 ± 0.72 (PHD) μg mL−1 and dexmedetomidine concentrations were 0.68 ± 0.12 (PLD) and 0.89 ± 0.08 (PHD) ng mL−1 at MIRNM determination.

      Conclusions and clinical relevance

      Dexmedetomidine (1 and 2 μg kg−1) decreased propofol induction dose. Dexmedetomidine (2 μg kg−1 hour−1) resulted in a significant decrease in propofol MIRNM.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to Veterinary Anaesthesia and Analgesia
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Acevedo-Arcique C.M.
        • Ibancovichi J.A.
        • Chavez J.R.
        • et al.
        Lidocaine, dexmedetomidine and their combination reduce isoflurane minimum alveolar concentration in dogs.
        PLoS One. 2014; 9: e106620
        • Adams H.A.
        • Schmitz C.S.
        • Baltes-Götz B.
        Endocrine stress reaction, hemodynamics and recovery in total intravenous and inhalation anesthesia. Propofol versus isoflurane.
        Anaesthesist. 1994; 43 ([In German]): 730-737
        • Cattai A.
        • Rabozzi R.
        • Natale V.
        • Franci P.
        The incidence of spontaneous movements (myoclonus) in dogs undergoing total intravenous anaesthesia with propofol.
        Vet Anaesth Analg. 2015; 42: 93-98
        • Chambers J.P.
        • Hall L.W.
        A clinical trial of propofol infusion anaesthesia in dogs.
        J Small Anim Pract. 1987; 28: 623-637
        • Davis C.A.
        • Seddighi R.
        • Cox S.K.
        • et al.
        Effect of fentanyl on the induction dose and minimum infusion rate of propofol preventing movement in dogs.
        Vet Anaesth Analg. 2017; 44: 727-737
        • Ebert T.J.
        • Muzi M.
        • Berens R.
        • et al.
        Sympathetic responses to induction of anesthesia in humans with propofol or etomidate.
        Anesthesiology. 1992; 76: 725-733
        • Ebner L.S.
        • Lerche P.
        • Bednarski R.M.
        • Hubbell J.A.
        Effect of dexmedetomidine, morphine–lidocaine–ketamine, and dexmedetomidine–morphine–lidocaine–ketamine constant rate infusions on the minimum alveolar concentration of isoflurane and bispectral index in dogs.
        Am J Vet Res. 2013; 74: 963-970
        • England G.C.
        • Andrews F.
        • Hammond R.A.
        Romifidine as a premedicant to propofol induction and infusion anaesthesia in the dog.
        J Small Anim Pract. 1996; 37: 79-83
        • Ferreira J.P.
        • Dzikiti B.T.
        • Zeiler G.E.
        • et al.
        Anaesthetic induction and recovery characteristics of a diazepam–ketamine combination compared with propofol in dogs.
        J S Afr Vet. 2015; 86: 1258
        • Frölich M.A.
        • Price D.D.
        • Robinson M.E.
        • et al.
        The effect of propofol on thermal pain perception.
        Anesth Analg. 2005; 100: 481-486
        • Gertler R.
        • Brown H.C.
        • Mitchell D.H.
        • Silvius E.N.
        Dexmedetomidine: a novel sedative-analgesic agent.
        Proc (Bayl Univ Med Cent). 2001; 14: 13-21
        • Goodchild C.S.
        • Serrao J.M.
        Cardiovascular effects of propofol in the anaesthetized dog.
        Br J Anaesth. 1989; 63: 87-92
        • Gómez-Villamandos R.J.
        • Palacios C.
        • Benítez A.
        • et al.
        Dexmedetomidine or medetomidine premedication before propofol–desflurane anaesthesia in dogs.
        J Vet Pharmacol Ther. 2006; 29: 157-163
        • Gutierrez-Blanco E.
        • Victoria-Mora J.M.
        • Ibancovichi-Camarillo J.A.
        • et al.
        Evaluation of the isoflurane-sparing effects of fentanyl, lidocaine, ketamine, dexmedetomidine, or the combination lidocaine–ketamine–dexmedetomidine during ovariohysterectomy in dogs.
        Vet Anaesth Analg. 2013; 40: 599-609
        • Hellebrekers L.J.
        • Sap R.
        Medetomidine as a premedicant for ketamine, propofol or fentanyl anaesthesia in dogs.
        Vet Rec. 1997; 140: 545-548
        • Herbert G.L.
        • Bowlt K.L.
        • Ford-Fennah V.
        • et al.
        Alfaxalone for total intravenous anaesthesia in dogs undergoing ovariohysterectomy: a comparison of premedication with acepromazine or dexmedetomidine.
        Vet Anaesth Analg. 2013; 40: 124-133
        • Keegan R.D.
        • Greene S.A.
        Cardiovascular effects of a continuous two-hour propofol infusion in dogs. Comparison with isoflurane anesthesia.
        Vet Surg. 1993; 22: 537-543
        • Kuusela E.
        • Raekallio M.
        • Anttila M.
        • et al.
        Clinical effects and pharmacokinetics of medetomidine and its enantiomers in dogs.
        J Vet Pharmacol Ther. 2000; 23: 15-20
        • Kuusela E.
        • Raekallio M.
        • Väisänen M.
        • et al.
        Comparison of medetomidine and dexmedetomidine as premedicants in dogs undergoing propofol–isoflurane anesthesia.
        Am J Vet Res. 2001; 62: 1073-1080
        • Kuusela E.
        • Vainio O.
        • Short C.E.
        • et al.
        A comparison of propofol infusion and propofol/isoflurane anaesthesia in dexmedetomidine premedicated dogs.
        J Vet Pharmacol Ther. 2003; 26: 199-204
        • Laing S.
        • Paul V.
        • Murison P.J.
        The effects of nitrous oxide on recovery from isoflurane anaesthesia in dogs.
        J Small Anim Pract. 2009; 50: 82-86
        • Lauder G.R.
        Total intravenous anesthesia will supercede inhalational anesthesia in pediatric anesthetic practice.
        Paediatr Anaesth. 2015; 25: 52-64
        • Lervik A.
        • Haga H.A.
        • Ranheim B.
        • Spadavecchia C.
        The influence of a continuous rate infusion of dexmedetomidine on the nociceptive withdrawal reflex and temporal summation during isoflurane anaesthesia in dogs.
        Vet Anaesth Analg. 2012; 39: 414-425
        • Mannarino R.
        • Luna S.P.L.
        • Monteiro E.R.
        • et al.
        Minimum infusion rate and hemodynamic effects of propofol, propofol–lidocaine and propofol–lidocaine–ketamine in dogs.
        Vet Anaesth Analg. 2012; 39: 160-173
        • Moran-Muñoz R.
        • Ibancovichi J.A.
        • Gutierrez-Blanco E.
        • et al.
        Effects of lidocaine, dexmedetomidine or their combination on the minimum alveolar concentration of sevoflurane in dogs.
        J Vet Med Sci. 2014; 76: 847-853
        • Morgan D.W.
        • Legge K.
        Clinical evaluation of propofol as an intravenous anaesthetic agent in cats and dogs.
        Vet Rec. 1989; 124: 31-33
        • Murphy M.R.
        • Hug Jr, C.C.
        The anesthetic potency of fentanyl in terms of its reduction of enflurane MAC.
        Anesthesiology. 1982; 57: 485-488
        • Nagashima Y.
        • Furukawa Y.
        • Chiba S.
        Propofol decreases contractility of isolated blood-perfused left ventricular muscle in the dog.
        J Anesth. 2000; 14: 45-47
        • Nolan A.
        • Reid J.
        Pharmacokinetics of propofol administered by infusion in dogs undergoing surgery.
        Br J Anaesth. 1993; 70: 546-551
        • Pascoe P.J.
        • Raekallio M.
        • Kuusela E.
        • et al.
        Changes in the minimum alveolar concentration of isoflurane and some cardiopulmonary measurements during three continuous infusion rates of dexmedetomidine in dogs.
        Vet Anaesth Analg. 2006; 33: 97-103
        • Raszplewicz J.
        • Macfarlane P.
        • West E.
        Comparison of sedation scores and propofol induction doses in dogs after intramuscular premedication with butorphanol and either dexmedetomidine or medetomidine.
        Vet Anaesth Analg. 2013; 40: 584-589
        • Reed R.A.
        • Seddighi M.R.
        • Odoi A.
        • et al.
        Effect of ketamine on the minimum infusion rate of propofol needed to prevent motor movement in dogs.
        Am J Vet Res. 2015; 76: 1022-1030
        • Reilly S.
        • Seddighi R.
        • Egger C.M.
        • et al.
        The effect of fentanyl on the end-tidal sevoflurane concentration needed to prevent motor movement in dogs.
        Vet Anaesth Analg. 2013; 40: 290-296
        • Rezende M.L.
        • Grimsrud K.N.
        • Stanley S.D.
        • et al.
        Pharmacokinetics and pharmacodynamics of intravenous dexmedetomidine in the horse.
        J Vet Pharmacol Ther. 2015; 38: 15-23
        • Robertson S.A.
        • Johnston S.
        • Beemsterboer J.
        Cardiopulmonary, anesthetic, and postanesthetic effects of intravenous infusions of propofol in greyhounds and non-greyhounds.
        Am J Vet Res. 1992; 53: 1027-1032
        • Schnider T.W.
        Pharmacokinetic and pharmacodynamic concepts underpinning total intravenous anesthesia.
        J Cardiothorac Vasc Anesth. 2015; 29: S7-S10
        • Uilenreef J.J.
        • Murrell J.C.
        • McKusick B.C.
        • Hellebrekers L.J.
        Dexmedetomidine continuous rate infusion during isoflurane anaesthesia in canine surgical patients.
        Vet Anaesth Analg. 2008; 35: 1-12
        • Valverde A.
        • Morey T.E.
        • Hernández J.
        • Davies W.
        Validation of several types of noxious stimuli for use in determining the minimum alveolar concentration for inhalation anesthetics in dogs and rabbits.
        Am J Vet Res. 2003; 64: 957-962
        • Vickery R.G.
        • Sheridan B.C.
        • Segal I.S.
        • et al.
        Anesthetic and hemodynamic effects of the stereoisomers of medetomidine, an alpha 2-adrenergic agonist, in halothane-anesthetized dogs.
        Anesth Analg. 1988; 67: 611-615
        • Weaver B.M.
        • Raptopoulos D.
        Induction of anaesthesia in dogs and cats with propofol.
        Vet Rec. 1990; 126: 617-620